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of traveling waves expressed as (l), are omitted in the mode

representation.

The resonance frequency for each eigen-excitation is never

different from that for a standing wave in the x–y plane, since

only the linear superimposition of the standing wave is made to

obtain the traveling waves. The resonance frequency was de-

termined for the idealized boundary conditions at the end of the

ferrite post [2]. The lowest operation mode is given by 1 = 1,

m=–l, andn=O.

The resonance frequency split for the rotational phase eigen-

excitations is related to the circulator bandwidth and the circu-

lation direction. Resonance frequency variation due to perme-

ability variation is given as follows [5]:

where ,uO is the permeability when the ferrite is demagnetized,

A/2=/2 -pO, H * denotes magnetic field for rotational phase

eigen-excitations, and dr denotes the volume integral element.

When anisotropy is weak, Aj2 maybe approximated as follows:

()
o —+ o

Ajlkj~OO. (20)

000

Using (19) and (20),

JC~ {Im(Hx*)Re(Hy*) – Re(Hx*)Im(Hy*) } d~—— —

P f /H*12 A
— . (21)

When the ferrite post is completely short or open circuited at

the two ends, the integrals along the ferrite axis in tlhe numerator

and the denominator are the same. Therefore, the volume inte-

grations can be replaced by surface integration. In this case, the

resonance frequency split is independent of the field variation

along the ferrite post axis.

In the present approximation, the resonance frequency splits

for the two rotational phase eigen-excitations are equal and

opposite, as seen from (17) and (21).

For the lowest operation modes,

ACD* %’6 K
—= *—-.

0 2.U
(22)

The preceding result indicates a bandwidth of about two times

compared with that of a cylindrical ferrite post lowest mode.

Circulation directions are the same as those of the lowest

cylindrical mode.
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Electromagnetic Fields Induced Inside Arbitra~ry Cylinders

of Biological Tissue

TE-KAO WU, MEMBER, ISEE, AND
LEONARD L. TSAI, MEMBER, IREE

Abstract—The electromagnetic field induced inside arbitrary cross-

sectioned cylinders of biological tissue is analyzed by integral equation

and moment method techniques. A TM or TE plane wave incidence is

assumed, and the cylinders consist of bone or muscle and may be mnlti-

Iayered. The integral equations are of the surface type, and are derived

via vector Green’s theorem and boundary conditions. Surface and

interior fields for both a one-layer and two-layer circular cylinder are

found to have excellent agreements with the exact eigenfmrction expsm-

sion resnlts, thus validating the numerical method. Extensive results are

presented for arbitrary cross-section cyliuders, with among these an

arm model composed of an elliptical outer mnscle layer and a circular

bone at the center. The field plots throughout the cylindler interior thus

obtained should be useful in diagnostics of microwave lhazards, partic-

ularly in predictions of the so-called “hot spots.”

I. INTRODUCTION

Biological effects of microwave radiation is an area of current

concern [1]. The mechanisms by which electromagnetic fields

penetrate biological tissues, and the potential hazards they pose,

are just beginning to be investigated. Analytical predictions in

the area have so far been rather limited. Primarily, treatments

have been confined to structures which conform to a separable

coordinate system (e.g., spheres or circular cylinders) [2]- [4 ].

For more realistic models with varied and arbitrary contours,

the versatility y of numerical techniques, i.e., moment method

solution of integral equations, which have been extensively

employed in other electromagnetic problems, should prove to be

particularly advantageous.

In this short paper, coupled surface integral equations (SIE’S)

are first derived via Maxwell’s equations, Green’s theorem, and

boundary conditions. The geometry of the analytical model to

be treated consists of arbitrarily contoured cylinders (infinitely

long in the z direction) of biological tissue illuminated by a

TM or TE plane wave. The method is similar to that used by

Tong [5], but differs significantly from the work of Livesay

and Chen [6]. The solution of the integral equations for the

surface fields then employs flat pulse expansion and point

matching. Once the surface fields are found, fields everywhere

interior to the cylinder are then readily determined.

To test the validity of this method, homogeneous circular

cylinders of muscle and fatty tissue are first studied. The surface

fields thus computed by integral equation methods are compared

with the exact eigenfunction expansion results. Surface fields on

homogeneous elliptical cylinders are next obtained to illustrate

the arbitrary geometry capabilities of the integral equation

solution. For a more complex structure, i.e., a two-layered

composite cylinder of circular cross section, the surface fields

obtained by the numerical solution are also compared with the

exact solution. The extension in this next case is for an arm model
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Fig. 1. Cross section of a homogeneous dielectric cylinder.

consisting of an elliptical muscle layer with a circular bone in the

center. Field plots throughout the interior for the preceding

models are also obtained, and they hopefully may aid in diag-

nostics of hazards from so-called “hot spots.”

II. INTEGRAL EQUATION FORMULATION

Consider a homogeneous Iossy dielectric cylinder (infinitely

long in the z direction, with, ,uO, C,eo, and n as permeability,

permittivity, and conductivity, respectively) as depicted in Fig. 1.

If the cylinder is illuminated by a TM incident plane wave, two

coupled electric field integral equations may be derived from

Maxwell’s equations, Green’s theorem, and the boundary

conditions [5], [7], [8], [15 ], [16].

and

(2)

where ? and ;’ are radial vectors from the origin to the field and

source points on the cylinder cross-sectional contour S. $ denotes

the Cauchy principle value integral with singularities removed;

its numerical treatment can be found in [16], [17]. E=(F) and

aE,(~)/~n’ are the unknown surface electric field and its normal

derivatives, E=i(7) = e-~~ox is the incident electric field, k. =
,—

time dependence, and ii is the unit outwardCOJ,UOCOwith a &“m[ “

normal to S, The two-dimensional Green’s function is given by

Gt(;, i’) = – ; Ho(2)(ki\F – 71) (3)

where HO w is the second kind and zeroth-order Hankel function;

its numerical evaluation follows standard procedures in [13],

[14], i = 1 or 2, with 1 denoting the exterior to the cylinder and

2 denoting the cylinder interior, kl = ko, and

kz = ko~c, - j~/(roeo).

The solution for the surface fields E=(f) and tJEz(F)/an from

the coupled integral equations (1) and (2) may now be readily

obtained by the method of moments [9]. Specifically, the con-

tour S is first divided into M segments each of width AS., then

E,(i) and aE=(i)/an are expanded in sets of flat pulse basis

functions, i.e.,

(4)

where An and B. are the unknown coefficients to be found,

Pn(?) = 1 for f e AS., and PH(F) = O otherwise. Substituting

Fig. 2. Cross section of a two-layered composite dielectric cylinder.

(4) into (1) and (2), and requiring (1) and (2) to hold only at the

midpoint of each segment (i.e., point matching) results in a

matrix equation for determining the unknown coefficients. Once

the unknown coefficients An and B. are found, fields everywhere

interior to the cylinder are calculated from

E=(F) =

J[

G,(i,?’) ~ - E,(F) aG$’i’) dl’ (5)
s 1

where f is in region 2 and F’ is on S.

If the cylinder is ilhminated by a TE incident plane wave, two

coupled magnetic field integral equations are derived using the

same reasoning as for (1) and (2).

H=(F) HH ~..,,aG1(?,F)
— – H:(F) + ,

2– s an’

and

(7)

where F and f‘ are on S, 2 = e,.so — jo/co, Hzi(f) = e–JkOX is

the incident magnetic field, and HZ(F) and aHz(i)/an are the

unknown surface field and its normal derivatives which may

now be readily obtained by the same solution procedure as

described in the TM case. Once the surface fields are found the

interior field is calculated from

HZ(F) =

J[
G,(v,?f) % - Hz(F’) ‘G2(r’i’) dl’ (8)

s 3n’ 1
where f is in region 2 and ~’ is on S.

Consider now a two-layered composite lossy dielectric

cylinder as depicted in Fig. 2. If a TM incident plane wave is

assumed, four coupled electric field integral equations are

obtained” again using the same reasoning as in (1) and (2).

o = f%(o +–H Ezo(i’)
aG3(i,i’)

2
- G,(i,F’) Y

Sa an’ 1

o = Ezb(;) +

f[

EZJ?’)
aG2(F,F’)

- G2(i,?’) a=
2 s~ an’ an’ 1
-H Ez.(?’)

aG2(?,i’)
- G2(7,F’) = dS’,

S= an’ an’ 1

dS’,

(9)

d’

(lo)

dS’

(11)



63SHORT PAPERS

and

where

on J

aEza(t=)
Eza(?) —

aEzJ?)
Ezb(F) —

f%’ an’ -

are the unknown surface fields and their normal derivatives to

be found.
E;..(7) = ~-j~clx

is the TM incident plane wave,

Gi(Fjf’) = ~ Ho(z)(kilf - i’1)

ki = caJ.aoei&o, i = 1,2,3

with kl = kO = WJ,UOCO,where ii is the unit outward normal to

S. or S~.

Similar to the single-layered cylinder case, the unknown

surface fields and normal derivatives are also obtained using

flat pulse expansion and point matching. Once the surface fields

are found, the fields interior to the cylinder ma~y readily be

obtained from

E=(i) =

J[

G ~i,i,) aEza(?’) 1c9G3(F,i’) ~S,
3 — – .Eza(;’) ——

s. an’ ad ‘

for f e region 3 (13)

and

HE (F,) aG2(F,ir)
E=(f) = ,a

maw ~s,
– G2(i,?’) ——

S. an’ an’ 1
HE(i,)aG2(f,F’) 1al;zb(~’)~s,—

zb – G2(?,i’) ——
ail

,
Sb an’

for ? e region 2. (14)

For a TE incident plane wave, four coupled magnetic field

integral equations may also be straightforwardly derived. The

details are given in [16].

For homogeneous or two-layered lossy dielectric circular

cylinders, the eigenfunction expansion method provides the

exact solution. Since this is a two-dimensional scattering problem,

standard cylindrical harmonic functions [10 ] may be employed

to represent the fields in each region. Applying boundary con-

ditions (i.e., continuous tangential E and H fields at the inter-

face), a set of simultaneous equations are obtained for finding

the unknown coefficients in the field expansion series. Once the

coefficients are obtained, fields everywhere interior to the

cylinder may readily be calculated. The details can be found in

[12], [16], [19].

III. RESULTS AND DISCUSSION

Numerical results for the surface fields on circular cylinders

of both muscle and fatty tissue are first computed using both the

SIE technique and the eigenfunction expansion methods. Ex-

cellent agreement between the two methods is obtained [15], [16];

thus the numerical solution can be considered valid. Rapid

convergence of the SIE solutions (with only ten pulses for each

circular cross-sectional contour) is also observed [16]. Results

obtained for 10SSYdielectric cylinders also seem to indicate that

the number of samples required for convergence is about the

same as for perfectly conducting cylinders [9], [16].

One of the main objectives of this study is to find means

which may aid in the detection of resonance effects and possible

Fig. 3. E-field plot for a circular cylinder of rnus$e (e, = 60, c = 1 U/m,
a = 0.159 m, ~ = 300 MHz, TM mcldent wave).

Fig. 4. E-field plot for an elliptical cylinder of muscle {e, = 60, u = 1 U/m,
a = 0.159 m, b = 0.239 m, ~ = 300 MHz, TM mclctent wave).

hot spots. Toward that end, the fields throughout the interior

of the previous models are examined. Computation of interior

fields are performed using (5), (8), (13), and (14), from the now

known surface fields, and with eight-point Gaussian quadrature

integration [13 ] over each surface pulse. To provide a detailed

graphical depiction of interior variations, contour plots of the

field magnitudes for the various models are given in Figs. 3-10.

It should be noted that since the E-field plot is related to the

time-average volumetric tissue-absorbed power density (i.e.,

P = +a~” E* [20]), these field plots will be useful to biological
researchers in microwave hazards assessment and the estimation

of the total amount of power absorbed by the tissue body.

In Figs. 3 and 4, field contour plots for a one-layer circular

and elliptical cylinder of muscle (.s, = 60, a = 1 7J/m, a = 6.25
in, b = 1.5a) illuminated by a TM polarized plane wave (fre-

quency = 300 MHz) are given. Notice that because of symmetry,

it is necessary to show only the upper half of the cylinder. It may

be observed that since muscle possesses a relatively high con-

ductivity, the fields are rapidly attenuated from the front to the

back of the cylinder. The same trend, however, does not apply

for cylinders of fatty tissue or bone, whose contour plots are

given in Figs. 5 and 6 (with &, = 5, 0 = 0.017 U/m). Here,

because resonance effects are not significantly attenuated, the

interior fields oscillate strongly. In fact, not only are the field

strengths at the back of the cylinder actually larger than at the

front, but through large regions the interior field strength may

be even higher than the incident illumination. Similar trends and

behaviors have also been observed for the TE case [16].

Field contour plots for the two-layered cylinders are given in

Figs. 7–10. Fig. 7 shows the trends for the circular cylinder,

where a circular layer of muscle (ez = 49, rrz = 0.40425 U/m,

b = 15 cm) encases a circular bone (es = 6.2, as = 0.08525

U/m, a = 10 cm) at 300 MHz. Notice that because the muscle
layer is relatively thin, the attenuation is weak and significant
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Fig. 5, .E-field plot for a circular cylinder of bone or fat (e, = 5, u = 0.017
U/m, a = 0.159 m, f = 300 MHz, TM incident wave).
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Fig. 8. E-field plot for a composite dielectric cylinder of elliptical muscle
(?z = 55,02 = 1.1 U/m, g = 6.5 cm, b = 9 cm, f= 3!)0 MHz) encasing
circular bone (83 = 6, us = 0.04 U/m, a = 2 cm, TM incident wave).

/0

Fig. 6. E-field plot for an elliptical cylinder of bone or fat (e, = 5, u =
0.017 U/m, a = 0.159 m, b = 0.239 m,f= 300 MHz, TM incident wave).

Fig. 9.

Fig. 7. E-field plot for a composite cylinder of circular muscle (ez = 49,
0 = 0.404 U/m, b = 0.15 m, ~ = 300 MHz) encasing circular bone
(t, = 6.2, u, = 0,085 V/m, a = 0.1 m, TM incident wave).

resonance effects still remain in the central bone region. For the

arm model consisting of an elliptical muscle layer (82 = 55,

a = 1.1 U/m, b = 9 cm, g = 6.5 cm) encasing a circular bone

(es = 6, a = 0.04 U/m, a = 2 cm), the trends are given in

Fig. 8. Here the comparatively quicker muscle layer significantly

attenuates the wave, with the result that resonance effects in the

central bone region, though still ,perceptible, now become some-

what inconsequential. I

Figs. 9 and 10 show the H- and E-field plots for the same

composite circular cylinder as in Fig. 7, now with a 300 MHz,

TE incident plane wave. It should be remarked that in Fig. 10,

for computational convenience, the exact solution rather than the

integral equation is used. The trends in the H field are similar to

those observed before (for the E field of the TM case). The E

~Y

H-field plot for the same cylinder as in Fig. 7, with TE excitation.

Fig. 10. E-field plot for the same cylinder as in Fig. 7, with TE excitation.

field in this case, however, exhibits drastically different behaviors.

Not only does there exist a discontinuity at the interface, as it

should, but also a null is now present. Notice that the null loca-

tion is away from the cylinder axis, reminding one of field

distributions in circular waveguides. Thus different resonance

mechanisms are evidently occurring in the TE case as compared

to the TM case.

It should be noted, inclosing, that though only field magnitudes

are shown, phase information is also available from this analysis.

By proper correlation of these results with experimental thermo-
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TABLE I
COMPARISON OF THE NUMBER OF UNKNOWNS BETWEEN SIE7S AND VIJ3’S

I SIE I VIE

Cube with N
samples on 24N2 3N3
each side

graphic data, and by extrapolating bulk dosimetry trends through

analysis of many models and parameters similar to the afore-

mentioned one, it is believed that this analysis should constitute

a useful diagnostic tool for predicting microwave hazards.

IV. CONCLUDING REMARKS

In this short paper the feasibility of using the SIE technique to

analyze the fields in arbitrarily shaped 10SSYdielectric cylinders

with a TM or TE incident plane wave has been demonstrated.

Generally, this method also applies fo.r any arbitrarily shaped

penetrable cylinders composed of both dielectric and magnetic

material. Although the illuminating sources considered here are

TM and TE plane waves, for near zone sources such as direct

contacted aperture sources, corner reflectors, etc., this technique

still applies. For dielectric circular cylinders, good agreement is

obtained between the SI~ solutions and the eigenfunction

expansion solutions. For a cylinder with arbitrary cross section,

however, the integral equation method, including both the. SIE

method of this short paper and the volume integral equation

(VIE) technique advocated in [6], [11], proves to be definitely

more advantageous.

A further breakdown of the comparable computer storage

requirement of the two integral equation method> is now in

order, since this dictates the maximum sampling rate and hence

body size which may be tractable. For conceptual simplicity

consider the homogeneous square cylinder and cube. Table I

shows the relative number of unknowns, and thus, the matrix

size, needed for each [16 ], To assure that meaningful results are

obtained, i.e., sufficient sampling to accurately describe field

variations, N should be large. Thus the WE can be seen to hold a

definite advantage (for N > 8). It should also be nc,ted that the

same sampling rate is assumed for tlhe VIE thrcmghout the

interior. In cases where e. or cr are large, and wavelen;zth becomes.
contracted inside the body, a much larger number of samples

than that assumed here may actually be needed. If the body is

not homogenecms, however, i.e., many layered Or even with

continuously varying e and a, then the VIE approach should

prove to be more suitable.

In order to aid in the determination of applicability, the major

advantages of each method are summarized here.

VIE Technique:

1) Applicable for arbitrary geometric configurations.

2) Avoids convergence problem of the eigenfunction series.

3) Useful for inhomogeneous bodies.

SIE Technique:

1) Less unknowns are required for homogeneous bodies.

2) Applicable for arbitrary geometric configurations.

3) Avoids convergence problem of the eigenfunction series.

Eigenfunctiort Expansion Technique:

1) Does not require the storage and inversion of a large

matrix.

2) Requires much less computer time.

65

In conclusion, the problem of predicting fields in arbitrary

cylinders of biological tissue has been successfully treated. By

the good agreement obtained and useful field contours found,

one may conclude that the numerical techniques employed here

are advantageous tools. This solution method has also been

successfully applied to three-dimensional bodies of revolution

[18] and will be presented in a later paper.
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Field and Power Density Distributions of the Dipolar Modes

in a Partially Filled Cylindrical Plasma Waveguide

GAR LAM YIP, SENIOR MEMBER, IEEE, AND SON LE-NGOC

Absfract—The field and power density distributions for the dipolar

modes in a partially filled plasma waveguide have been studied at operat-

ing points in the vicinity of the plasma, the surface wave, and the gyro
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