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of traveling waves expressed as (1), are omitted in the mode

representation. .

The resonance frequency for each eigen-excitation is never
different from that for a standing wave in the x-y plane, since
only the linear superimposition of the standing wave is made to
obtain the traveling waves. The resonance frequency was de-
termined for the idealized boundary conditions at the end of the
ferrite post [2]. The lowest operation mode is given by [ = 1,
m= —1,andn = 0.

The resonance frequency split for the rotational phase eigen-
excitations is related to the circulator bandwidth and the circu-
lation direction. Resonance frequency variation due to perme-
ability variation is given as follows [5]:
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where u, is-the permeability when the ferrite is demagnetized,

Afl = i — py, H* denotes magneti¢ field for rotational phase

eigen-excitations, and dr denotes the volume integral element.
When anisotropy is weak, Afi may be approximated as follows:
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Using (19) and (20),
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When the ferrite post is completely short or open circuited at
the two ends, the integrals along the ferrite axis in the numerator
and the denominator are the same. Therefore, the volume inte-
grations can be replaced by surface integration. In this case, the
resonance frequency split is independent of the field variation
along the ferrite post axis.

In the present approximation, the resonance frequency splits
for the two rotational phase eigen-excitations are equal and
opposite, as seen from (17) and (21).

For the lowest operation modes,
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The preceding result indicates a bandwidth of about two times
compared with that of a cylindrical ferrite post lowest mode.
Circulation directions are the same as those of the lowest
cylindrical mode.
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Electromagnetic Fields Induced Inside Arbitrary Cylinders
of Biological Tissue

TE-KAO WU, MEMBER, IEEE, AND
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Abstract—The electromagnetic field induced inside arbitrary cross-
sectioned cylinders of biological tissue is analyzed by integral equation
and moment method techniques. A TM or TE plane wave incidence is
assumed, and the cylinders consist of bone or muscle and may be multi-
layered. The integral equations are of the surface type, and are derived
via vector Green’s theorem and boundary conditions. Surface and
interior fields for both a one-layer and two-layer circular cylinder are
found to have excellent agreements with the exact eigenfunction expan-
sion results, thus validating the numerical method. Extensive results are
presented for arbitrary cross-section cylinders, with among these an
arm model composed of an elliptical outer muscle layer and a circular
bone at the center. The field plots throughout the cylinder interior thus
obtained should be useful in diagnostics of microwave hazards, partic-
ularly in predictions of the so-called “hot spots.”

I. INTRODUCTION

Biological effects of microwave radiation is an area of current
concern [1]. The mechanisms by which electromagnetic fields
penetrate biological tissues, and the potential hazards they pose,
are just beginning to be investigated. Analytical predictions in
the area have so far been rather limited. Primarily, treatments
have been confined to structures which conform to a separable
coordinate system (e.g., spheres or circular cylinders) [2]-[4].
For more realistic models with varied and arbitrary contours,
the versatility of numerical techniques, i.e., moment method
solution of integral equations, which have been extensively
employed in other electromagnetic problems, should prove to be
particularly advantageous.

In this short paper, coupled surface integral equations (SIE’s)
are first derived via Maxwell’s equations, Green’s theorem, and
boundary conditions. The geometry of the analytical model to
be treated consists of arbitrarily contoured cylinders (infinitely
long in the z direction) of biological tissue illuminated by a
TM or TE plane wave. The method is similar to that used by
Tong [5], but differs significantly from the work of Livesay
and Chen [6]. The solution of the integral equations for the
surface fields then employs flat pulse expansion and point
matching. Once the surface fields are found, fields everywhere
interior to the cylinder are then readily determined.

To test the validity of this method, homogeneous circular
cylinders of muscle and fatty tissue are first studied. The surface
fields thus computed by integral equation methods are compared
with the exact eigenfunction expansion results. Surface fields on
homogeneous elliptical cylinders are next obtained to illustrate
the arbitrary geometry capabilities of the integral equation
solution. For a more complex structure, i.e., a two-layered
composite cylinder of circular cross section, the surface fields
obtained by the numerical solution are also compared with the
exact solution. The extension in this next case is for an arm model

Manuscript received April 14, 1975; revised June 28, 1976. .
The authors are with the Department of Electrical Engineering, Univer-
sity of Mississippi, University, MS 38677.



62 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, JANUARY 1977

Fig. 1. Cross section of a homogeneous dielectric cylinder.

consisting of an elliptical muscle layer with a circular bone in the
center. Field plots throughout the interior for the preceding
models are also obtained, and they hopefully may aid in diag-
nostics of hazards from so-called “hot spots.”

II. INTEGRAL EQUATION FORMULATION

Consider a homogeneous lossy dielectric cylinder (infinitely
long in the z direction, with g, &£9, and o as permeability,
permittivity, and conductivity, respectively) as depicted in Fig. 1.
If the cylinder is illuminated by a TM incident plane wave, two
coupled electric field integral equations may be derived from
Maxwell’s equations, Green’s theorem, and the boundary
conditions [5], [7], [8], [15], [16].
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where 7 and 7’ are radial vectors from the origin to the field and
source points on the cylinder cross-sectional contour S. f denotes
the Cauchy principle value integral with singularities removed;
its numerical treatment can be found in [16], [17]. E,(7) and
OE,(7)[on’ are the unknown surface electric field and its normal
derivatives, E,{(7) = e™#** is the incident electric field, &k, =
oV pgeq Ho€o With a e’®* time dependence, and 7# is the unit outward
normal to S. The two-dimensional Green’s function is given by

Gi(i, ') = '—f Hy®(k|7 — 7)) ®)

where H,? is the second kind and zeroth-order Hankel function;
its numerical evaluation follows standard procedures in [13],
[14], i = 1 or 2, with 1 denoting the exterior to the cylinder and
2 denoting the cylinder interior, k; = kg, and

ky = koVe, — jo/(weo).

The solution for the surface fields E,(F) and 0E (#)/én from
the coupled integral equations (1) and (2) may now be readily
obtained by the method of moments [9]. Specifically, the con-
tour S is first divided into M segments each of width AS,, then

E(F) and OE,(F)/on are expanded in scts of flat pulse basis
functions, i.e.,

~ B,P,(7) )

where 4, and B, are the unknown coefficients to be found,
P(F) = 1 for Fe AS,, and P,(F) = 0 otherwise. Substituting
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Fig. 2. Cross section of a two-layered composite dielectric cylinder.

(4) into (1) and (2), and requiring (1) and (2) to hold only at the
midpoint of each segment (i.e., point matching) results in a
matrix equation for determining the unknown coefficients. Once
the unknown coefficients 4, and B, are found, fields everywhere
interior to the cylinder are calculated from

Ez(f) = f l:Gz(‘,") aE (r) _ Ez(i,) aGZ(rr )] dl/ (5)
s on'

where 7 is in region 2 and 7’ is on S.

If the cylinder is illuminated by a TE incident plane wave, two
coupled magnetic field integral equations are derived using the
same reasoning as for (1) and (2).
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where 7 and 7’ are on S, & = g&, — jojw, H(F) = e > is
the incident magnetic field, and H,(7) and J0H,(7)/0n are the
unknown surface field and its normal derivatives which may
now be readily obtained by the same solution procedure as
described in the TM case. Once the surface fields are found the
interior field is calculated from

H(P) = f {Gz(- i1y QH)
S a

where 7 is in region 2 and 7’ is on S.

Consider now a two-layered composite lossy dielectric
cylinder as depicted in Fig. 2. If a TM incident plane wave is
assumed, four coupled electric field integral equations are
obtained again using the same reasoning as in (1) and (2).
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are the unknown surface fields and their normal derivatives to
be found.
Ezinc(f) — e—-jk;x

is the TM incident planec wave,

Gi(7i") = ﬁHJﬂ(kAr‘ - #)

k; = co\/,uosiso, i= 123

withky = kg = oV Hoto, Where 7 is the unit outward normal to
S, or Sp.

Similar to the single-layered cylinder case, the unknown
surface fields and normal derivatives are also obtained using
flat pulse expansion and point matching. Once the surface fields
are found, the fields interior to the cylinder may readily be

obtained from
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For a TE incident plane wave, four coupled magnetic field
integral equations may also be straightforwardly derived. The
details are given in [16].

For homogeneous or two-layered lossy dielectric circular
cylinders, the eigenfunction expansion method provides the
exact solution. Since this is a two-dimensional scattering problem,
standard cylindrical harmonic functions [10] may be employed
to represent the fields in each region. Applying boundary con-
ditions (i.e., continuous tangential £ and H fields at the inter-
face), a set of simultaneous equations are obtained for finding
the unknown coefficients in the field expansion series. Once the
coefficients are obtained, fields everywhere interior to the
cylinder may readily be calculated. The details can be found in
[12], [16], [19].

for 7 € region 2.

III. REsuLTs AND DISCUSSION

Numerical results for the surface fields on circular cylinders
of both muscle and fatty tissue are first computed using both the
SIE technique and the eigenfunction expansion methods. Ex-
cellent agreement between the two methods is obtained [15], [16];
thus the numerical solution can be considered valid. Rapid
convergence of the SIE solutions (with only ten pulses for each
circular cross-sectional contour) is also observed [16]. Results
obtained for lossy dielectric cylinders also seem to indicate that
the number of samples required for convergence is about the
same as for perfectly conducting cylinders [9], [16].

One of the main objectives of this study is to find means
which may aid in the detection of resonance effects and possible
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Fig. 3. E-field plot for a circular cylinder of muscle (¢, = 60, ¢ = 1 ¢5/m,

a = 0.159 m, f = 300 MHz, TM incident wave).
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Fig. 4. E-field plot for an elliptical cylinder of muscle (¢, = 60, ¢ = 1 ¢5/m,
a= 0.159 m, b = 0.239 m, f = 300 MHz, TM incident wave).

hot spots. Toward that end, the fields throughout the interior
of the previous models are examined. Computation of interior
fields are performed using (5), (8), (13), and (14), from the now
known surface fields, and with eight-point Gaussian quadrature
integration [13] over each surface pulse. To provide a detailed
graphical depiction of interior variations, contour plots of the
field magnitudes for the various models are given in Figs. 3-10.
It should be noted that since the E-field plot is related to the
time-average volumetric tissue-absorbed power density (i.e.,
p = Y0E - E* [20)), these field plots will be useful to biological
researchers in microwave hazards assessment and the estimation
of the total amount of power absorbed by the tissue body.

In Figs. 3 and 4, field contour plots for a one-layer circular
and elliptical cylinder of muscle (¢, = 60, ¢ = 1 G/m, a = 6.25
in, b = 1.5q) illuminated by a TM polarized plane wave (fre-
quency = 300 MHz) are given. Notice that because of symmetry,
it is necessary to show only the upper half of the cylinder. It may
be observed that since muscle possesses a relatively high con-
ductivity, the fields are rapidly attenuated from the front to the
back of the cylinder. The same trend, however, does not apply
for cylinders of fatty tissue or bone, whose contour plots are
given in Figs. 5 and 6 (with & = 5, ¢ = 0.017 U/m). Here,
because resonance effects are not significantly attenuated, the
interior fields oscillate strongly. In fact, not only are the field
strengths at the back of the cylinder actually larger than at the
front, but through large regions the interior field strength may
be even higher than the incident illumination. Similar trends and
behaviors have also been observed for the TE case [16].

Field contour plots for the two-layered cylinders are given in
Figs. 7-10. Fig. 7 shows the trends for the circular cylinder,
where a circular layer of muscle (e, = 49, o, = 0.40425 U/m,
b = 15 cm) encases a circular bone (g3 = 6.2, o3 = 0.08525
U/m, a = 10 cm) at 300 MHz. Notice that because the muscle
layer is relatively thin, the attenuation is weak and significant
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Fig. 5. E-field plot for a circular cylinder of bone or fat (¢, = 5, ¢ = 0.017
U/m, a = 0.159 m, f = 300 MHz, TM incident wave).
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Fig. 6. E-field plot for an elliptical cylinder of bone or fat (5, = 5,0 =
0.017 p/m, @ = 0.159m, b = 0.239 m, f = 300 MHz, TM incident wave).

Fig. 7. E-field plot for a composite cylinder of circular muscle (g, = 49,
o = 0.404 5/m, b = 0.15 m, f = 300 MHz) encasing circular bone
(e3 = 6.2, 03 = 0.085 V/m, @ = 0.1 m, TM incident wave).

resonance effects still remain in the central bone region. For the
arm model consisting of an elliptical muscle layer (¢, = 55,
¢ =110/m, b =9cm, g = 6.5 cm) encasing a circular bone
(3 = 6, 0 = 0,04 U/m, a = 2 cm), the trends are given in
Fig. 8. Here the comparatively quicker muscle layer significantly
attenuates the wave, with the result that resonance effects in the
central bone region, though still perceptible, now become some-
what inconsequential. |

Figs. 9 and 10 show the H- and E-field plots for the same
composite circular cylinder as in Fig. 7, now with a 300 MHz,
TE incident plane wave. It should be remarked that in Fig. 10,
for computational convenience, the exact solution rather than the
integral equation is used. The trends in the H field are similar to
those observed before (for the E field of the TM case). The E

Fig. 8. E-field plot for a composite dielectric cylinder of elliptical muscle
(¢, = 55,0, = 1.1 y/m, g = 6.5¢cm, b = 9 cm, f = 300 MHz) encasing
circular bone (¢35 = 6, 03 = 0.04 5/m, ¢ = 2 ¢m, TM incident wave).

Fig. 9. H-field plot for the same cylinder as in Fig. 7, with TE excitation.

Fig. 10. E-field plot for the same cylinder as in Fig. 7, with TE excitation.

field in this case, however, exhibits drastically different behaviors.
Not only does there exist a discontinuity at the interface, as it
should, but also a null is now present. Notice that the null loca-
tion is away from the cylinder axis, reminding one of field
distributions in circular waveguides. Thus different resonance
mechanisms are evidently occurring in the TE case as compared
to the TM case.

It should be noted, in closing, that though only field magnitudes
are shown, phase information is also available from this analysis.
By proper correlation of these results with experimental thermo-
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TABLE I
COMPARISON OF THE NUMBER OF UNKNOWNS BETWEEN SIE’s AND VIE’s

SIE VIE
Square cylinder
with N samples 2
on each side 8N N
Cube with N 2 %
samples on 24N 3N
each side

graphic data, and by extrapolating bulk dosimetry trends through
analysis of many models and parameters similar to the afore-
mentioned one, it is believed that this analysis should constitute
a useful diagnostic tool for predicting microwave hazards.

IV. CoNCLUDING REMARKS
In this short paper the feasibility of using the SIE technique to
analyze the fields in arbitrarily shaped lossy dielectric cylinders
with a TM or TE incident plane wave has been demonstrated.
Generally, this method also applies for any arbitrarily shaped

penetrable cylinders composed of both dielectric and magnetic

material. Although the illuminating sources considered here are
TM and TE plane waves, for near zone sources such as direct
contacted aperture sources, corner reflectors, etc., this technique
still applies. For dielectric circular cylinders, good agreement is

btamed between the SIE solutions and the eigenfunction
expansion solutions. For a cylinder with arbitrary cross section,
however, the integral equation method, including both the. SIE
method of this short paper and the volume integral equation
(VIE) technique advocated in [6], [11] proves to be definitely
more advantageous.

A further breakdown of the comparable computer storage
requirement of the two integral equation methods is now in
order, since this dictates the maximum sampling rate and hence
body size which may be tractable. For conceptual simplicity
consider the homogeneous square cylinder and cube. Table 1
shows the relative number of unknowns, and thus the matrix
size, needed for each [16]. To assure that meaningful results are
obtained, i.e., sufficient sampling to accurately describe field
variations, N should be large. Thus the SIE can be seen to hold a
definite advantage (for N > 8). It should also be noted that the
same sampling rate is assumed for the VIE throughout the
interior. In cases where ¢, or ¢ are large, and wavelength becomes
contracted inside the body, a much larger number of samples
than that assumed here may actually be needed. If the body is
not homogeneous, however, i.e., many layered or even with
continuously varying ¢ and o, then the VIE approach should
prove to be more suitable. '

In order to aid in the determination of applicability, the major
advantages of each method are summarized here.

VIE Technique:

1) Applicable for arbitrary geometric configurations.
2) Avoids convergence problem of the eigenfunction series.
3) Useful for inhomogeneous bodies.

SIE Technique:

1) Less unknowns are required for homogeneous bodies.
2) Applicable for arbitrary geometric configurations.
3) Avoids convergence problem of the elgenfunctlon series.

Eigenfunction Expansion Technique:

1) Does not require the storage and inversion of a large
matrix. '
2) Requires much Iless computer time.
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In conclusion, the problem of predicting fields in arbitrary
cylinders of biological tissue has been successfully treated. By
the good agreement obtained and useful field contours found,
one may conclude that the numerical techniques employed here
are advantageous tools. This solution method has also been
successfully applied to three-dimensional bodies of revolution
[18] and will be presented in a later paper.
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Field and Power Density Distributions of the Dipolar Modes
in a Partially Filled Cylindrical Plasma Waveguide
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Abstract—The field and power density distributions for the dipolar
modes in a partially filled plasma waveguide have been studied-at operat-
ing points in the vicinity of the plasma, the surface wave, and the gyro
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